extension | φ:Q→Aut N | d | ρ | Label | ID |
(C22×C6).1D6 = Dic3.S4 | φ: D6/C1 → D6 ⊆ Aut C22×C6 | 72 | 6- | (C2^2xC6).1D6 | 288,852 |
(C22×C6).2D6 = Dic3×S4 | φ: D6/C1 → D6 ⊆ Aut C22×C6 | 36 | 6- | (C2^2xC6).2D6 | 288,853 |
(C22×C6).3D6 = Dic3⋊2S4 | φ: D6/C1 → D6 ⊆ Aut C22×C6 | 36 | 6 | (C2^2xC6).3D6 | 288,854 |
(C22×C6).4D6 = Dic3⋊S4 | φ: D6/C1 → D6 ⊆ Aut C22×C6 | 36 | 6 | (C2^2xC6).4D6 | 288,855 |
(C22×C6).5D6 = S3×A4⋊C4 | φ: D6/C1 → D6 ⊆ Aut C22×C6 | 36 | 6 | (C2^2xC6).5D6 | 288,856 |
(C22×C6).6D6 = D6⋊S4 | φ: D6/C1 → D6 ⊆ Aut C22×C6 | 36 | 6 | (C2^2xC6).6D6 | 288,857 |
(C22×C6).7D6 = A4⋊D12 | φ: D6/C1 → D6 ⊆ Aut C22×C6 | 36 | 6+ | (C2^2xC6).7D6 | 288,858 |
(C22×C6).8D6 = C3×A4⋊Q8 | φ: D6/C2 → S3 ⊆ Aut C22×C6 | 72 | 6 | (C2^2xC6).8D6 | 288,896 |
(C22×C6).9D6 = C12×S4 | φ: D6/C2 → S3 ⊆ Aut C22×C6 | 36 | 3 | (C2^2xC6).9D6 | 288,897 |
(C22×C6).10D6 = C3×C4⋊S4 | φ: D6/C2 → S3 ⊆ Aut C22×C6 | 36 | 6 | (C2^2xC6).10D6 | 288,898 |
(C22×C6).11D6 = C6×A4⋊C4 | φ: D6/C2 → S3 ⊆ Aut C22×C6 | 72 | | (C2^2xC6).11D6 | 288,905 |
(C22×C6).12D6 = C3×A4⋊D4 | φ: D6/C2 → S3 ⊆ Aut C22×C6 | 36 | 6 | (C2^2xC6).12D6 | 288,906 |
(C22×C6).13D6 = C12.1S4 | φ: D6/C2 → S3 ⊆ Aut C22×C6 | 72 | 6- | (C2^2xC6).13D6 | 288,332 |
(C22×C6).14D6 = C4×C3.S4 | φ: D6/C2 → S3 ⊆ Aut C22×C6 | 36 | 6 | (C2^2xC6).14D6 | 288,333 |
(C22×C6).15D6 = C22⋊D36 | φ: D6/C2 → S3 ⊆ Aut C22×C6 | 36 | 6+ | (C2^2xC6).15D6 | 288,334 |
(C22×C6).16D6 = C2×C6.S4 | φ: D6/C2 → S3 ⊆ Aut C22×C6 | 72 | | (C2^2xC6).16D6 | 288,341 |
(C22×C6).17D6 = C23.D18 | φ: D6/C2 → S3 ⊆ Aut C22×C6 | 36 | 6 | (C2^2xC6).17D6 | 288,342 |
(C22×C6).18D6 = C22×C3.S4 | φ: D6/C2 → S3 ⊆ Aut C22×C6 | 36 | | (C2^2xC6).18D6 | 288,835 |
(C22×C6).19D6 = A4⋊Dic6 | φ: D6/C2 → S3 ⊆ Aut C22×C6 | 72 | 6- | (C2^2xC6).19D6 | 288,907 |
(C22×C6).20D6 = C4×C3⋊S4 | φ: D6/C2 → S3 ⊆ Aut C22×C6 | 36 | 6 | (C2^2xC6).20D6 | 288,908 |
(C22×C6).21D6 = C12⋊S4 | φ: D6/C2 → S3 ⊆ Aut C22×C6 | 36 | 6+ | (C2^2xC6).21D6 | 288,909 |
(C22×C6).22D6 = C2×C6.7S4 | φ: D6/C2 → S3 ⊆ Aut C22×C6 | 72 | | (C2^2xC6).22D6 | 288,916 |
(C22×C6).23D6 = (C2×C6)⋊4S4 | φ: D6/C2 → S3 ⊆ Aut C22×C6 | 36 | 6 | (C2^2xC6).23D6 | 288,917 |
(C22×C6).24D6 = C3×C23.6D6 | φ: D6/C3 → C22 ⊆ Aut C22×C6 | 24 | 4 | (C2^2xC6).24D6 | 288,240 |
(C22×C6).25D6 = C3×C23.7D6 | φ: D6/C3 → C22 ⊆ Aut C22×C6 | 24 | 4 | (C2^2xC6).25D6 | 288,268 |
(C22×C6).26D6 = C3×C23.8D6 | φ: D6/C3 → C22 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).26D6 | 288,650 |
(C22×C6).27D6 = C3×C23.9D6 | φ: D6/C3 → C22 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).27D6 | 288,654 |
(C22×C6).28D6 = C3×Dic3⋊D4 | φ: D6/C3 → C22 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).28D6 | 288,655 |
(C22×C6).29D6 = C3×C23.11D6 | φ: D6/C3 → C22 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).29D6 | 288,656 |
(C22×C6).30D6 = C3×C23.23D6 | φ: D6/C3 → C22 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).30D6 | 288,706 |
(C22×C6).31D6 = C3×C23.12D6 | φ: D6/C3 → C22 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).31D6 | 288,707 |
(C22×C6).32D6 = C3×D6⋊3D4 | φ: D6/C3 → C22 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).32D6 | 288,709 |
(C22×C6).33D6 = C3×C23.14D6 | φ: D6/C3 → C22 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).33D6 | 288,710 |
(C22×C6).34D6 = C3×C12⋊3D4 | φ: D6/C3 → C22 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).34D6 | 288,711 |
(C22×C6).35D6 = C22.D36 | φ: D6/C3 → C22 ⊆ Aut C22×C6 | 72 | 4 | (C2^2xC6).35D6 | 288,13 |
(C22×C6).36D6 = C23⋊2Dic9 | φ: D6/C3 → C22 ⊆ Aut C22×C6 | 72 | 4 | (C2^2xC6).36D6 | 288,41 |
(C22×C6).37D6 = C23.16D18 | φ: D6/C3 → C22 ⊆ Aut C22×C6 | 144 | | (C2^2xC6).37D6 | 288,87 |
(C22×C6).38D6 = C22⋊2Dic18 | φ: D6/C3 → C22 ⊆ Aut C22×C6 | 144 | | (C2^2xC6).38D6 | 288,88 |
(C22×C6).39D6 = C23.8D18 | φ: D6/C3 → C22 ⊆ Aut C22×C6 | 144 | | (C2^2xC6).39D6 | 288,89 |
(C22×C6).40D6 = C22⋊C4×D9 | φ: D6/C3 → C22 ⊆ Aut C22×C6 | 72 | | (C2^2xC6).40D6 | 288,90 |
(C22×C6).41D6 = Dic9⋊4D4 | φ: D6/C3 → C22 ⊆ Aut C22×C6 | 144 | | (C2^2xC6).41D6 | 288,91 |
(C22×C6).42D6 = C22⋊3D36 | φ: D6/C3 → C22 ⊆ Aut C22×C6 | 72 | | (C2^2xC6).42D6 | 288,92 |
(C22×C6).43D6 = C23.9D18 | φ: D6/C3 → C22 ⊆ Aut C22×C6 | 144 | | (C2^2xC6).43D6 | 288,93 |
(C22×C6).44D6 = D18⋊D4 | φ: D6/C3 → C22 ⊆ Aut C22×C6 | 144 | | (C2^2xC6).44D6 | 288,94 |
(C22×C6).45D6 = Dic9.D4 | φ: D6/C3 → C22 ⊆ Aut C22×C6 | 144 | | (C2^2xC6).45D6 | 288,95 |
(C22×C6).46D6 = C22.4D36 | φ: D6/C3 → C22 ⊆ Aut C22×C6 | 144 | | (C2^2xC6).46D6 | 288,96 |
(C22×C6).47D6 = D4×Dic9 | φ: D6/C3 → C22 ⊆ Aut C22×C6 | 144 | | (C2^2xC6).47D6 | 288,144 |
(C22×C6).48D6 = C23.23D18 | φ: D6/C3 → C22 ⊆ Aut C22×C6 | 144 | | (C2^2xC6).48D6 | 288,145 |
(C22×C6).49D6 = C36.17D4 | φ: D6/C3 → C22 ⊆ Aut C22×C6 | 144 | | (C2^2xC6).49D6 | 288,146 |
(C22×C6).50D6 = C23⋊2D18 | φ: D6/C3 → C22 ⊆ Aut C22×C6 | 72 | | (C2^2xC6).50D6 | 288,147 |
(C22×C6).51D6 = C36⋊2D4 | φ: D6/C3 → C22 ⊆ Aut C22×C6 | 144 | | (C2^2xC6).51D6 | 288,148 |
(C22×C6).52D6 = Dic9⋊D4 | φ: D6/C3 → C22 ⊆ Aut C22×C6 | 144 | | (C2^2xC6).52D6 | 288,149 |
(C22×C6).53D6 = C36⋊D4 | φ: D6/C3 → C22 ⊆ Aut C22×C6 | 144 | | (C2^2xC6).53D6 | 288,150 |
(C22×C6).54D6 = C62.31D4 | φ: D6/C3 → C22 ⊆ Aut C22×C6 | 24 | 4 | (C2^2xC6).54D6 | 288,228 |
(C22×C6).55D6 = C62.32D4 | φ: D6/C3 → C22 ⊆ Aut C22×C6 | 24 | 4 | (C2^2xC6).55D6 | 288,229 |
(C22×C6).56D6 = C62.110D4 | φ: D6/C3 → C22 ⊆ Aut C22×C6 | 72 | | (C2^2xC6).56D6 | 288,281 |
(C22×C6).57D6 = C62.38D4 | φ: D6/C3 → C22 ⊆ Aut C22×C6 | 72 | | (C2^2xC6).57D6 | 288,309 |
(C22×C6).58D6 = C2×D4×D9 | φ: D6/C3 → C22 ⊆ Aut C22×C6 | 72 | | (C2^2xC6).58D6 | 288,356 |
(C22×C6).59D6 = C2×D4⋊2D9 | φ: D6/C3 → C22 ⊆ Aut C22×C6 | 144 | | (C2^2xC6).59D6 | 288,357 |
(C22×C6).60D6 = D4⋊6D18 | φ: D6/C3 → C22 ⊆ Aut C22×C6 | 72 | 4 | (C2^2xC6).60D6 | 288,358 |
(C22×C6).61D6 = C62.94C23 | φ: D6/C3 → C22 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).61D6 | 288,600 |
(C22×C6).62D6 = C62.95C23 | φ: D6/C3 → C22 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).62D6 | 288,601 |
(C22×C6).63D6 = C62.98C23 | φ: D6/C3 → C22 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).63D6 | 288,604 |
(C22×C6).64D6 = C62.99C23 | φ: D6/C3 → C22 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).64D6 | 288,605 |
(C22×C6).65D6 = C62.100C23 | φ: D6/C3 → C22 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).65D6 | 288,606 |
(C22×C6).66D6 = C62.101C23 | φ: D6/C3 → C22 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).66D6 | 288,607 |
(C22×C6).67D6 = C62.56D4 | φ: D6/C3 → C22 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).67D6 | 288,609 |
(C22×C6).68D6 = C62.57D4 | φ: D6/C3 → C22 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).68D6 | 288,610 |
(C22×C6).69D6 = C62⋊3Q8 | φ: D6/C3 → C22 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).69D6 | 288,612 |
(C22×C6).70D6 = C62.60D4 | φ: D6/C3 → C22 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).70D6 | 288,614 |
(C22×C6).71D6 = C62.111C23 | φ: D6/C3 → C22 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).71D6 | 288,617 |
(C22×C6).72D6 = C62.112C23 | φ: D6/C3 → C22 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).72D6 | 288,618 |
(C22×C6).73D6 = C62.113C23 | φ: D6/C3 → C22 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).73D6 | 288,619 |
(C22×C6).74D6 = Dic3×C3⋊D4 | φ: D6/C3 → C22 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).74D6 | 288,620 |
(C22×C6).75D6 = C62.115C23 | φ: D6/C3 → C22 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).75D6 | 288,621 |
(C22×C6).76D6 = C62.116C23 | φ: D6/C3 → C22 ⊆ Aut C22×C6 | 24 | | (C2^2xC6).76D6 | 288,622 |
(C22×C6).77D6 = C62.117C23 | φ: D6/C3 → C22 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).77D6 | 288,623 |
(C22×C6).78D6 = C62⋊6D4 | φ: D6/C3 → C22 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).78D6 | 288,626 |
(C22×C6).79D6 = C62.121C23 | φ: D6/C3 → C22 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).79D6 | 288,627 |
(C22×C6).80D6 = C62⋊7D4 | φ: D6/C3 → C22 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).80D6 | 288,628 |
(C22×C6).81D6 = C62⋊8D4 | φ: D6/C3 → C22 ⊆ Aut C22×C6 | 24 | | (C2^2xC6).81D6 | 288,629 |
(C22×C6).82D6 = C62⋊4Q8 | φ: D6/C3 → C22 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).82D6 | 288,630 |
(C22×C6).83D6 = C62.221C23 | φ: D6/C3 → C22 ⊆ Aut C22×C6 | 144 | | (C2^2xC6).83D6 | 288,734 |
(C22×C6).84D6 = C62⋊6Q8 | φ: D6/C3 → C22 ⊆ Aut C22×C6 | 144 | | (C2^2xC6).84D6 | 288,735 |
(C22×C6).85D6 = C62.223C23 | φ: D6/C3 → C22 ⊆ Aut C22×C6 | 144 | | (C2^2xC6).85D6 | 288,736 |
(C22×C6).86D6 = C22⋊C4×C3⋊S3 | φ: D6/C3 → C22 ⊆ Aut C22×C6 | 72 | | (C2^2xC6).86D6 | 288,737 |
(C22×C6).87D6 = C62.225C23 | φ: D6/C3 → C22 ⊆ Aut C22×C6 | 144 | | (C2^2xC6).87D6 | 288,738 |
(C22×C6).88D6 = C62⋊12D4 | φ: D6/C3 → C22 ⊆ Aut C22×C6 | 72 | | (C2^2xC6).88D6 | 288,739 |
(C22×C6).89D6 = C62.227C23 | φ: D6/C3 → C22 ⊆ Aut C22×C6 | 144 | | (C2^2xC6).89D6 | 288,740 |
(C22×C6).90D6 = C62.228C23 | φ: D6/C3 → C22 ⊆ Aut C22×C6 | 144 | | (C2^2xC6).90D6 | 288,741 |
(C22×C6).91D6 = C62.229C23 | φ: D6/C3 → C22 ⊆ Aut C22×C6 | 144 | | (C2^2xC6).91D6 | 288,742 |
(C22×C6).92D6 = C62.69D4 | φ: D6/C3 → C22 ⊆ Aut C22×C6 | 144 | | (C2^2xC6).92D6 | 288,743 |
(C22×C6).93D6 = D4×C3⋊Dic3 | φ: D6/C3 → C22 ⊆ Aut C22×C6 | 144 | | (C2^2xC6).93D6 | 288,791 |
(C22×C6).94D6 = C62.72D4 | φ: D6/C3 → C22 ⊆ Aut C22×C6 | 144 | | (C2^2xC6).94D6 | 288,792 |
(C22×C6).95D6 = C62.254C23 | φ: D6/C3 → C22 ⊆ Aut C22×C6 | 144 | | (C2^2xC6).95D6 | 288,793 |
(C22×C6).96D6 = C62.256C23 | φ: D6/C3 → C22 ⊆ Aut C22×C6 | 144 | | (C2^2xC6).96D6 | 288,795 |
(C22×C6).97D6 = C62⋊14D4 | φ: D6/C3 → C22 ⊆ Aut C22×C6 | 144 | | (C2^2xC6).97D6 | 288,796 |
(C22×C6).98D6 = C62.258C23 | φ: D6/C3 → C22 ⊆ Aut C22×C6 | 144 | | (C2^2xC6).98D6 | 288,797 |
(C22×C6).99D6 = C2×D6.3D6 | φ: D6/C3 → C22 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).99D6 | 288,970 |
(C22×C6).100D6 = C2×D6.4D6 | φ: D6/C3 → C22 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).100D6 | 288,971 |
(C22×C6).101D6 = C2×C12.D6 | φ: D6/C3 → C22 ⊆ Aut C22×C6 | 144 | | (C2^2xC6).101D6 | 288,1008 |
(C22×C6).102D6 = C3×C23.16D6 | φ: D6/S3 → C2 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).102D6 | 288,648 |
(C22×C6).103D6 = C3×Dic3.D4 | φ: D6/S3 → C2 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).103D6 | 288,649 |
(C22×C6).104D6 = C3×S3×C22⋊C4 | φ: D6/S3 → C2 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).104D6 | 288,651 |
(C22×C6).105D6 = C3×Dic3⋊4D4 | φ: D6/S3 → C2 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).105D6 | 288,652 |
(C22×C6).106D6 = C3×D6⋊D4 | φ: D6/S3 → C2 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).106D6 | 288,653 |
(C22×C6).107D6 = C3×C23.21D6 | φ: D6/S3 → C2 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).107D6 | 288,657 |
(C22×C6).108D6 = C3×D4×Dic3 | φ: D6/S3 → C2 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).108D6 | 288,705 |
(C22×C6).109D6 = C6×D4⋊2S3 | φ: D6/S3 → C2 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).109D6 | 288,993 |
(C22×C6).110D6 = C62.6Q8 | φ: D6/S3 → C2 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).110D6 | 288,227 |
(C22×C6).111D6 = C2×Dic32 | φ: D6/S3 → C2 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).111D6 | 288,602 |
(C22×C6).112D6 = C62.97C23 | φ: D6/S3 → C2 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).112D6 | 288,603 |
(C22×C6).113D6 = C2×D6⋊Dic3 | φ: D6/S3 → C2 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).113D6 | 288,608 |
(C22×C6).114D6 = C2×C6.D12 | φ: D6/S3 → C2 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).114D6 | 288,611 |
(C22×C6).115D6 = C2×Dic3⋊Dic3 | φ: D6/S3 → C2 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).115D6 | 288,613 |
(C22×C6).116D6 = C2×C62.C22 | φ: D6/S3 → C2 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).116D6 | 288,615 |
(C22×C6).117D6 = S3×C6.D4 | φ: D6/S3 → C2 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).117D6 | 288,616 |
(C22×C6).118D6 = C62⋊4D4 | φ: D6/S3 → C2 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).118D6 | 288,624 |
(C22×C6).119D6 = C62⋊5D4 | φ: D6/S3 → C2 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).119D6 | 288,625 |
(C22×C6).120D6 = C22×S3×Dic3 | φ: D6/S3 → C2 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).120D6 | 288,969 |
(C22×C6).121D6 = C22×C6.D6 | φ: D6/S3 → C2 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).121D6 | 288,972 |
(C22×C6).122D6 = C22×D6⋊S3 | φ: D6/S3 → C2 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).122D6 | 288,973 |
(C22×C6).123D6 = C22×C3⋊D12 | φ: D6/S3 → C2 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).123D6 | 288,974 |
(C22×C6).124D6 = C22×C32⋊2Q8 | φ: D6/S3 → C2 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).124D6 | 288,975 |
(C22×C6).125D6 = C3×C12.48D4 | φ: D6/C6 → C2 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).125D6 | 288,695 |
(C22×C6).126D6 = C3×C23.26D6 | φ: D6/C6 → C2 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).126D6 | 288,697 |
(C22×C6).127D6 = C12×C3⋊D4 | φ: D6/C6 → C2 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).127D6 | 288,699 |
(C22×C6).128D6 = C3×C23.28D6 | φ: D6/C6 → C2 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).128D6 | 288,700 |
(C22×C6).129D6 = C3×C12⋊7D4 | φ: D6/C6 → C2 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).129D6 | 288,701 |
(C22×C6).130D6 = C6×C6.D4 | φ: D6/C6 → C2 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).130D6 | 288,723 |
(C22×C6).131D6 = C3×C24⋊4S3 | φ: D6/C6 → C2 ⊆ Aut C22×C6 | 24 | | (C2^2xC6).131D6 | 288,724 |
(C22×C6).132D6 = C6×C4○D12 | φ: D6/C6 → C2 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).132D6 | 288,991 |
(C22×C6).133D6 = C18.C42 | φ: D6/C6 → C2 ⊆ Aut C22×C6 | 288 | | (C2^2xC6).133D6 | 288,38 |
(C22×C6).134D6 = C2×C4×Dic9 | φ: D6/C6 → C2 ⊆ Aut C22×C6 | 288 | | (C2^2xC6).134D6 | 288,132 |
(C22×C6).135D6 = C2×Dic9⋊C4 | φ: D6/C6 → C2 ⊆ Aut C22×C6 | 288 | | (C2^2xC6).135D6 | 288,133 |
(C22×C6).136D6 = C36.49D4 | φ: D6/C6 → C2 ⊆ Aut C22×C6 | 144 | | (C2^2xC6).136D6 | 288,134 |
(C22×C6).137D6 = C2×C4⋊Dic9 | φ: D6/C6 → C2 ⊆ Aut C22×C6 | 288 | | (C2^2xC6).137D6 | 288,135 |
(C22×C6).138D6 = C23.26D18 | φ: D6/C6 → C2 ⊆ Aut C22×C6 | 144 | | (C2^2xC6).138D6 | 288,136 |
(C22×C6).139D6 = C2×D18⋊C4 | φ: D6/C6 → C2 ⊆ Aut C22×C6 | 144 | | (C2^2xC6).139D6 | 288,137 |
(C22×C6).140D6 = C4×C9⋊D4 | φ: D6/C6 → C2 ⊆ Aut C22×C6 | 144 | | (C2^2xC6).140D6 | 288,138 |
(C22×C6).141D6 = C23.28D18 | φ: D6/C6 → C2 ⊆ Aut C22×C6 | 144 | | (C2^2xC6).141D6 | 288,139 |
(C22×C6).142D6 = C36⋊7D4 | φ: D6/C6 → C2 ⊆ Aut C22×C6 | 144 | | (C2^2xC6).142D6 | 288,140 |
(C22×C6).143D6 = C2×C18.D4 | φ: D6/C6 → C2 ⊆ Aut C22×C6 | 144 | | (C2^2xC6).143D6 | 288,162 |
(C22×C6).144D6 = C24⋊4D9 | φ: D6/C6 → C2 ⊆ Aut C22×C6 | 72 | | (C2^2xC6).144D6 | 288,163 |
(C22×C6).145D6 = C62.15Q8 | φ: D6/C6 → C2 ⊆ Aut C22×C6 | 288 | | (C2^2xC6).145D6 | 288,306 |
(C22×C6).146D6 = C22×Dic18 | φ: D6/C6 → C2 ⊆ Aut C22×C6 | 288 | | (C2^2xC6).146D6 | 288,352 |
(C22×C6).147D6 = C22×C4×D9 | φ: D6/C6 → C2 ⊆ Aut C22×C6 | 144 | | (C2^2xC6).147D6 | 288,353 |
(C22×C6).148D6 = C22×D36 | φ: D6/C6 → C2 ⊆ Aut C22×C6 | 144 | | (C2^2xC6).148D6 | 288,354 |
(C22×C6).149D6 = C2×D36⋊5C2 | φ: D6/C6 → C2 ⊆ Aut C22×C6 | 144 | | (C2^2xC6).149D6 | 288,355 |
(C22×C6).150D6 = C23×Dic9 | φ: D6/C6 → C2 ⊆ Aut C22×C6 | 288 | | (C2^2xC6).150D6 | 288,365 |
(C22×C6).151D6 = C22×C9⋊D4 | φ: D6/C6 → C2 ⊆ Aut C22×C6 | 144 | | (C2^2xC6).151D6 | 288,366 |
(C22×C6).152D6 = C2×C4×C3⋊Dic3 | φ: D6/C6 → C2 ⊆ Aut C22×C6 | 288 | | (C2^2xC6).152D6 | 288,779 |
(C22×C6).153D6 = C2×C6.Dic6 | φ: D6/C6 → C2 ⊆ Aut C22×C6 | 288 | | (C2^2xC6).153D6 | 288,780 |
(C22×C6).154D6 = C62⋊10Q8 | φ: D6/C6 → C2 ⊆ Aut C22×C6 | 144 | | (C2^2xC6).154D6 | 288,781 |
(C22×C6).155D6 = C2×C12⋊Dic3 | φ: D6/C6 → C2 ⊆ Aut C22×C6 | 288 | | (C2^2xC6).155D6 | 288,782 |
(C22×C6).156D6 = C62.247C23 | φ: D6/C6 → C2 ⊆ Aut C22×C6 | 144 | | (C2^2xC6).156D6 | 288,783 |
(C22×C6).157D6 = C2×C6.11D12 | φ: D6/C6 → C2 ⊆ Aut C22×C6 | 144 | | (C2^2xC6).157D6 | 288,784 |
(C22×C6).158D6 = C4×C32⋊7D4 | φ: D6/C6 → C2 ⊆ Aut C22×C6 | 144 | | (C2^2xC6).158D6 | 288,785 |
(C22×C6).159D6 = C62.129D4 | φ: D6/C6 → C2 ⊆ Aut C22×C6 | 144 | | (C2^2xC6).159D6 | 288,786 |
(C22×C6).160D6 = C62⋊19D4 | φ: D6/C6 → C2 ⊆ Aut C22×C6 | 144 | | (C2^2xC6).160D6 | 288,787 |
(C22×C6).161D6 = C2×C62⋊5C4 | φ: D6/C6 → C2 ⊆ Aut C22×C6 | 144 | | (C2^2xC6).161D6 | 288,809 |
(C22×C6).162D6 = C62⋊24D4 | φ: D6/C6 → C2 ⊆ Aut C22×C6 | 72 | | (C2^2xC6).162D6 | 288,810 |
(C22×C6).163D6 = C24×D9 | φ: D6/C6 → C2 ⊆ Aut C22×C6 | 144 | | (C2^2xC6).163D6 | 288,839 |
(C22×C6).164D6 = C22×C32⋊4Q8 | φ: D6/C6 → C2 ⊆ Aut C22×C6 | 288 | | (C2^2xC6).164D6 | 288,1003 |
(C22×C6).165D6 = C22×C4×C3⋊S3 | φ: D6/C6 → C2 ⊆ Aut C22×C6 | 144 | | (C2^2xC6).165D6 | 288,1004 |
(C22×C6).166D6 = C22×C12⋊S3 | φ: D6/C6 → C2 ⊆ Aut C22×C6 | 144 | | (C2^2xC6).166D6 | 288,1005 |
(C22×C6).167D6 = C2×C12.59D6 | φ: D6/C6 → C2 ⊆ Aut C22×C6 | 144 | | (C2^2xC6).167D6 | 288,1006 |
(C22×C6).168D6 = C23×C3⋊Dic3 | φ: D6/C6 → C2 ⊆ Aut C22×C6 | 288 | | (C2^2xC6).168D6 | 288,1016 |
(C22×C6).169D6 = C3×C6.C42 | central extension (φ=1) | 96 | | (C2^2xC6).169D6 | 288,265 |
(C22×C6).170D6 = Dic3×C2×C12 | central extension (φ=1) | 96 | | (C2^2xC6).170D6 | 288,693 |
(C22×C6).171D6 = C6×Dic3⋊C4 | central extension (φ=1) | 96 | | (C2^2xC6).171D6 | 288,694 |
(C22×C6).172D6 = C6×C4⋊Dic3 | central extension (φ=1) | 96 | | (C2^2xC6).172D6 | 288,696 |
(C22×C6).173D6 = C6×D6⋊C4 | central extension (φ=1) | 96 | | (C2^2xC6).173D6 | 288,698 |
(C22×C6).174D6 = C2×C6×Dic6 | central extension (φ=1) | 96 | | (C2^2xC6).174D6 | 288,988 |
(C22×C6).175D6 = S3×C22×C12 | central extension (φ=1) | 96 | | (C2^2xC6).175D6 | 288,989 |
(C22×C6).176D6 = C2×C6×D12 | central extension (φ=1) | 96 | | (C2^2xC6).176D6 | 288,990 |
(C22×C6).177D6 = Dic3×C22×C6 | central extension (φ=1) | 96 | | (C2^2xC6).177D6 | 288,1001 |